Space charge neutralization by electron-transparent suspended graphene
نویسندگان
چکیده
Graphene possesses many fascinating properties originating from the manifold potential for interactions at electronic, atomic, or molecular levels. Here we report measurement of electron transparency and hole charge induction response of a suspended graphene anode on top of a void channel formed in a SiO2/Si substrate. A two-dimensional (2D) electron gas induced at the oxide interface emits into air and makes a ballistic transport toward the suspended graphene. A small fraction (>~0.1%) of impinging electrons are captured at the edge of 2D hole system in graphene, demonstrating good transparency to very low energy (<3 eV) electrons. The hole charges induced in the suspended graphene anode have the effect of neutralizing the electron space charge in the void channel. This charge compensation dramatically enhances 2D electron gas emission at cathode to the level far surpassing the Child-Langmuir's space-charge-limited emission.
منابع مشابه
Ab initio simulation of helium-ion microscopy images: the case of suspended graphene.
Helium ion microscopy (HIM), which was released in 2006 by Ward et al., provides nondestructive imaging of nanoscale objects with higher contrast than scanning electron microscopy. HIM measurement of suspended graphene under typical conditions is simulated by first-principles time-dependent density functional theory and the 30 keV He+ collision is found to induce the emission of electrons depen...
متن کاملGate tuneable beamsplitter in ballistic graphene
We present a beam splitter in a suspended, ballistic, multiterminal, bilayer graphene device. By using local bottomgates, a p-n interface tilted with respect to the current direction can be formed. We show that the p-n interface acts as a semi-transparent mirror in the bipolar regime and that the reflectance and transmittance of the p-n interface can be tuned by the gate voltages. Moreover, by ...
متن کاملWiedemann-Franz relation and thermal-transistor effect in suspended graphene.
We extract experimentally the electronic thermal conductivity, Ke, in suspended graphene that we dope using a back-gate electrode. We make use of two-point dc electron transport at low bias voltages and intermediate temperatures (50-160 K), where the electron and lattice temperatures are decoupled. The thermal conductivity is proportional to the charge conductivity times the temperature, confir...
متن کاملApproaching ballistic transport in suspended graphene.
The discovery of graphene raises the prospect of a new class of nanoelectronic devices based on the extraordinary physical properties of this one-atom-thick layer of carbon. Unlike two-dimensional electron layers in semiconductors, where the charge carriers become immobile at low densities, the carrier mobility in graphene can remain high, even when their density vanishes at the Dirac point. Ho...
متن کاملTransfer-free batch fabrication of large-area suspended graphene membranes.
We demonstrate a process for batch production of large-area (100-3000 microm(2)) patterned free-standing graphene membranes on Cu scaffolds using chemical vapor deposition (CVD)-grown graphene. This technique avoids the use of silicon and transfers of graphene. As one application of this technique, we fabricate transmission electron microscopy (TEM) sample supports. TEM characterization of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014